Chemical and structural analysis of sub-20 nm graphene patterns generated by scanning probe lithography
نویسندگان
چکیده
منابع مشابه
Limiting factors in sub-10 nm scanning-electron-beam lithography
Achieving the highest possible resolution using scanning-electron-beam lithography SEBL has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 1990 ; Black et al., IBM J. Res. Dev. 51, 605 2007 ; Yang et al., J. Chem. Phys. 116, 5892 2002 have driven demand for feature sizes ...
متن کاملAchieving sub-10-nm resolution using scanning electron beam lithography
Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications have driven demand for feature sizes well into the sub-10-nm domain. While SEBL has the highest resolution of nearly any conventional patterning technique available, reliably defining features at t...
متن کاملSub-20-nm alignment in nanoimprint lithography using Moiré fringe.
Accurate multi-level overlay capability for nanoimprint lithography (NIL) is essential to integrated circuit manufacturing and other multilayer imprint applications. Using the "beat" grating image (Moiré fringe) generated by overlaying two sets of gratings that have slightly different periods, we obtained an alignment signal with a sensitivity better than 10 nm in nanoimprint lithography. The a...
متن کاملIO nm electron beam lithography and sub-50 nm overlay using a modified scanning electron microscope
Gratings of 10 nm wide metal lines 30 nm apart, and quantum transistor gates with 10 nm wide gaps over 300 nm long between two metal rectangles have been repeatedly achieved on thick GaAs substrates using a modified scanning electron microscope operated at 35 keV and liftoff of Ni/Au. Furthermore, multilevel electron beam lithography with a standard deviation (30) of an overlay accuracy (30 dev...
متن کاملAdvanced oxidation scanning probe lithography.
Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Carbon
سال: 2018
ISSN: 0008-6223
DOI: 10.1016/j.carbon.2017.12.033